ОЦЕНКА СОСТОЯНИЯ ЛУГОВЫХ ЭКОСИСТЕМ ПОЙМЫ Р.ПРИПЯТИ ПРИ ПАСТБИШНОМ ИСПОЛЬЗОВАНИИ

С.Ф. Тимофеев, Н.М. Дайнеко, С.В. Жадько

УО «Гомельский государственный университет имени Франциска Скорины», г.Гомель, Dajneko@gsu.by

В связи развитием мясного скотоводства в зоне Припятского Полесья актуальным является рациональное использование луговых экосистем при пастбищном использовании. В течение 2013—2014 гг. нами проводилось изучение луговых экосистем поймы р.Припяти Мозырского района КСУП «Козенки-Агро» при пастбищном использовании.

Ниже приводится характеристика изучаемых луговых экосистем.

Объект 1. Выровненное понижение левобережной центральной поймы, 100x200 м. Проективное покрытие 100%. Высота травостоя 70–80 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Caricetum gracilis*, вариант *Glyceria maxima*, субвариант *typica*, союза *Caricion gracilis* (Neuhaust 1959) Bab.-Tul. 1963, порядка *Magnocaricetalia* Piga. 1953, класса *Phragmito-Magnocaricetea* Klika in Klika et Novak 1941.

Объект 2. Грива левобережной поймы, ширина 10 м, длина 100 м. Проективное покрытие 80%. Высота травостоя 50–60 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Agrostietum tenuis*, союзу *Cynasurion* Тх. 1947, порядку *Arrhenatheretalia* Pawl. 1928, классу *Molinio-Arrhenatheretea* R. Тх. 1937

Объект 3. Склон гривы левобережной центральной поймы. Проективное покрытие 90%. Высота травостоя 70–80 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Poo palustris – Alopecuretum pratensis*, вариант *Agrostis canina* Shelyag et al. 1985, союзу *Alopecurion pratensis* Passarge 1964, порядку *Molinietalia* W. Koch 1926, классу *Molinio-Arrhenatheretea* R. Tx. 1937 em. R. Tx. 1970.

Объект 4. Межгривное понижение, ширина 15 м, длина 100 м. Проективное покрытие – 100%, высота 90 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Caricetum vesicariae* Br.-Bl. et Denis 1926, союзу Magnocaricion elatae Koch 1926, порядку *Magnocaricetalia* Pignatti 1953, классу *Phragmito-Magnocaricetea* Klika in Klika et Novak 1941.

Объект 5. Плоская грива левобережной центральной поймы шириной 25 м, длиной 150 м. Проективное покрытие — 90%, высота травостоя 60—65 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Agrostictum vinealis*, субассоциации *Koelerietosum delavignei*, вариант *Allium angulosum*, (Koch 1930) R. Тх. ар. Dierb. 1972 corr. em. Shelyag-Sosonko et al. 1986, союзу *Agrostion vinealis* Sipajlova et al. 1985, порядку *Brometalia erecti* Koch 1926 em. Br.-Bl. 1936, классу *Molinio-Arrhenatheretea* R. Тх. 1937 em. R. Тх. 1970.

Объект 6. Межгривное понижение, ширина 15 м, длина 100 м. Проективное покрытие 85–90%. По эколого-флористической классификации луговой фитоценоз отнесен к ассоциации *Caricetum vulpinae* Novunski 1927, вариант *Agrostis canina*, союзу *Magnocaricion* elatae Koch 1926, порядку *Magnocaricetalia* Pignatti 1953, классу *Phragmiti-Magnocaricetea* Klika in Klika et Novak 1941.

Объект 7. Плоское понижение левобережной поймы, ширина 20 м, длина 150 м. Проективное покрытие 80–90%, высота 120–130 см. По эколого-флористической классификации луговое сообщество отнесено к ассоциации *Phalaroidetum arundinaceac* Libbert 1931, союзу *Magnocaricion* elatae Koch 1926, порядку *Magnocaricetalia* Pignatti 1953, классу *Phragmito-Magnocaricetea* Klika in Klika et Novak 1941.

Объект 8. Плоская равнина левобережной центральной поймы. Проективное покрытие 80–90%, высота 70–80 см. По эколого-флористической классификации луговое сообщество относится к ассоциации *Poo palustris-Alopecuretum pratensis*, вариант *Agrostis canina*, союзу *Alopecurion pratensis* Passarge 1964, порядку *Molinietalia* W. Koch 1926, классу *Molinio-Arrhenatheretea* R. Tx. 1937.

Результаты исследований показали, что почвы пастбищных угодий сильнокислые, характеризуется очень низким содержанием подвижного фосфора и подвижного калия. Особенностью почв является относительно высокое содержание органического вещества, что, несомненно, связано с периодическим затоплением луга (таблица 1).

Таблица 1. Агрохимические показатели почвы в луговых сообществах пойменной экосистемы р.Припяти (напротив н.п.Лужевичи, пастбищное использование), 2013 г.

	Определяемые показатели						
Ассоциация	pH _{KCl}	Калий (подвиж-	Фосфор (по-	Органическое в-во			
	bukcl	ный), мг/кг	движный), мг/кг	(гумус), %			
Caricetum gracilis	4,30	125	13	6,71			
Agrostietum tenuis	4,10	36	49	2,38			
Agrostictum vinealis	3,84	55	28	5,71			
Poo palustris-Alopecuretum pratensis,	4,21	103	20	4,20			
вариант Agrostis canina	7,21	103	20	4,20			
Agrostietum vinealis	3,97	48	13	4,37			
Caricetum vulpinae	4,14	89	34	6,12			
Phalaroidetum arundinaceac	4,56	96	19	4,96			
Poo palustris-Alopecuretum pratensis,	4,21	103	20	4,20			
вариант Agrostis canina	4,21	103	20	7,20			

Анализ почв изучаемых луговых сообществ на содержание тяжелых металлов показал, что количество меди (0,19-1,23~мг/кг), кобальта (0,25-0,42~мг/кг), кадмия (0,07~мг/кг), хрома (0,14-0,16~мг/кг), цинка (1,07-4,45~мг/кг), свинца (1,42-6,74~мг/кг) находилось в пределах ПДК. В почвах отдельных луговых ассоциаций наблюдалось несколько повышенное содержание цинка, свинца, однако эти величины находились в пределах ПДК. Практически в почвах всех исследуемых ассоциаций наблюдалось превышение ПДК по марганцу в 2-10 раз.

Анализ продуктивности луговых экосистем пастбищного использования в среднем за два года (таблица 2) показал, что из восьми изучаемых ассоциаций наиболее высокая продуктивность травостоя отмечена у ассоциаций *Phalaroidetum arundinacea* и *Caricetum gracilis*. У ряда ассоциаций *Poo palustris* – *Alopecuretum pratensis*, *Caricetum vesicariae*, *Caricetum vulpinae* продуктивность несколько ниже, наиболее низкая продуктивность установлена для ассоциации *Agrostietum tenuis* и *Agrostietum vinealis*. Минеральные удобрения увеличивают урожайность луга в 1,3–1,4 раза. В среднем распределение урожая зеленой массы по циклам стравливания составляет в 1-ом – 50%, III – 30%, III – 20%, а поедаемость соответственно – I – 90%, III – 70%, III – 60%.

Таблица 2. Продуктивность (ц/га сухой массы) травяных сообществ луговых экосистем поймы р.Припяти при пастбищном использовании, в среднем за 2013–2014 гг.

Повремие возращиеми	Циклы стравливания							
Название ассоциации	I	II	III	Всего				
Canicatum quacilia	23,2*	<u>13,9</u>	<u>9,3</u>	<u>46,4</u>				
Caricetum gracilis	30,3	18,6	9,3	58,2				
Acrostictum tomais	12,0	8,5	<u>5,8</u>	<u>26,3</u>				
Agrostietum tenuis	17,5	11,4	6,2	35,1				
Poo palustris – Alopecuretum pratensis	<u>17,5</u>	<u>12,3</u>	<u>8,3</u>	<u>38,9</u>				
Poo patustris – Atopecuretum pratensis	26,2	16,4	8,8	51,4				
Canicatum nasioanias	19,8	<u>13,6</u>	<u>7,9</u>	41,3				
Caricetum vesicariae	28,7	17,7	9,2	55,3				
A	12,5	9,4	<u>5,9</u>	<u>27,8</u>				
Agrostietum vinealis	18,7	11,7	6,2	36,6				
Canicatum mulninga	<u>16,2</u>	<u>11,7</u>	<u>7,5</u>	<u>35,4</u>				
Caricetum vulpinae	23,9	15,5	7,7	47,1				
Phalaroidetum arundinacea	23,4	<u>18,2</u>	10,3	<u>51,9</u>				
Phatarotaetum arunatnacea	35,7	22,7	10,5	68,9				
Poo palustris-Alopecuretum pratensis, вариант Ag-	16,5	12,4	7,8	<u>36,7</u>				
rostis canina	20,1	16,2	8,7	45,0				
HCD				1,8				
HCP _{0,5 ц/га}	_	_	_	2,2				

^{*}Над чертой указана продуктивность без внесения удобрений (контроль), под чертой – вариант с внесением $N_{30}P_{45}K_{60}$ кг/га под первый цикл стравливания и N_{30} кг/га под второй цикл стравливания.

Анализ участия агроботанических групп в составе сообществ ассоциаций уровня луговых экосистем поймы р.Припяти при пастбищном использовании показал, что из восьми ассоциаций у пяти в

агроботаническом составе преобладали злаки (78,4–93,9%), а у трех ассоциаций – осоки (80–85%). Во всех ассоциациях отсутствовали бобовые. Отмечено также участие во всех ассоциациях группы разнотравья (10–15%). После двулетнего пастбищного использования в агроботаническом составе наблюдается тенденция увеличения группы злаков и уменьшения группы осок и разнотравья.

Анализ онтогенетической структуры видов-доминантов ассоциаций луговых экосистем пойменного луга р.Припяти при пастбищном использовании в течение двух лет показал, что в ассоциации *Caricetum gracilis*, в ценопопуляции доминантного вида осоки острой преобладали средневозрастные генеративные растения g_2 (36,1%). Количество особей имматурных и старых генеративных растений было практически равным (19,3%). Всего в онтогенетическом составе насчитывалось четыре онтогенетические группы.

В ассоциации *Agrostietum tenuis* у доминирующего вида *Agrostis tenuis* находилось пять онтогенетических групп с преобладанием g_2 растений – 35,9%. Примерно равным было соотношение плотности виргинильных и молодых генеративных растений – 20,5% и 18,6%.

В ассоциации *Poo palustris-Alopecuretum pratensis* у ценопопуляции доминантного вида *Poa palustris* отмечено пять онтогенетических групп, наибольшее участие принимали g_2 растения — 33,5% и виргинильные — 24,2%. Сходный онтогенетический состав наблюдался и у ценопопуляции *Alopecurus pratensis*, у них была похожая реакция на пастбищное использование.

В ассоциации *Caricetum vesicaria* у ценопопуляции *Carex versicaria* зафиксировано четыре онтогенетические группы с доминированием $g_2 - 37,8\%$, соотношение других онтогенетических групп было более равномерным.

В ассоциации Agrostietum vinealis доминант Agrostis vinealis включала четыре онтогенетические группы с преобладанием $g_2 - 38,7\%$. У виргинильных растений и молодых генеративных были практические одинаковые величины. Следует отметить, относительно невысокое участие старых генеративных растений.

В ассоциации *Caricetum vulpinae* у доминирующей ценопопуляции *Carex vulpina* онтогенетический спектр состоял также из четырех онтогенетических групп, где наибольшее участие было у g_2 – 39,2%, участие g_1 – 29,1%, а g_3 – 12,1%.

В ассоциации *Phalaroidetum arundinaceae* у ценопопуляции *Phalaroides arundinacea в* онтогенетической составе находилось 4 онтогенетические группы с преобладанием $g_2 - 37,6\%$, v - 29,3%, $g_1 - 13,6\%$, $g_3 - 19,7\%$.

В ассоциации *Poo palustris—Alopecuretum pratensis* у доминирующей ценопопуляции *Poa palustris* в онтогенетической спектр входило пять онтогенетических групп. Наибольшее участие принимали $g_2 - 34,2\%$ и $g_1 - 22,6\%$. Также в этой ценопопуляциии отмечено появление имматурных особей – 11,4%. У содоминанта *Alopecurus pratensis* отмечены сходные закономерности онтогенетического состава. Плотность особей лисохвоста лугового на 3,1 особь/ m^2 выше, чем у *Poa palustris*.

Таким образом, при пастбищном использовании травостоя происходит адаптация онтогенетического состава к этому режиму использования, создаются условия для прорастания семян и пополнения молодыми особями. Устойчивость ценопопуляций обеспечивается преобладанием в онтогенетическом спектре средневозрастных генеративных растений, а также наличием имматурных и виргинильных растений, что свидетельствует о благоприятных условиях развития.

Зоотехнический анализ (таблица 3) показал, что наибольшее содержание сырой клетчатки отмечено во втором и пятом объектах, а минимальное – в третьем. В шести объектах содержание сырой клетчатки было выше 30% абс.сух. вещества. Более всего сырого протеина отмечалось в восьмом, шестом и четвертом объектах, а меньше всего – во втором и пятом. Аналогичная ситуация оказалась и с переваримым протеином. Содержание сырой золы в трех объектах было практически одинаковым и наибольшим, а менее всего ее оказалось во втором объекте. Более всего сырого жира находилось в первом и третьем объектах, а минимальное – в пятом. В остальных объектах его содержание было примерно равным. Содержание микроэлементов в изучаемых объектах также колебалось, и разница между минимальным и максимальным количеством часто составляла два раза. Разница в содержании кормовых единиц в изучаемых объектах составляла 1,4 раза, а обменной энергии – в два раза.

Таким образом, проведенные исследования луговых сообществ пойменной экосистемы р.Припяти при пастбищном использовании показали, что почвы очень кислые и кислые, бедны подвижными соединениями фосфора и калия. Выделяются сообщества, которые обладают высокой естественной продуктивностью. Внесение минеральных удобрений увеличивает продуктивность в 1,3–1,4 раза. При двухлетнем пастбищном использовании увеличивается содержание агроботанической группы злаков. Устойчивость ценопопуляций обеспечивается преобладанием в онтогенетическом спектре средневозрастных генеративных растений, а также наличием имматурных и виргиниль-

ных растений, что свидетельствует о благоприятных условиях развития. Определяемые зоотехнические показатели в изучаемых ассоциациях отличались друг от друга почти в два раза. Выполненный зоотехнический анализ травяных кормов показал, что по питательности, в целом, они удовлетворяют нормам кормления сельскохозяйственных животных.

Таблица 3. Зоотехнический анализ травяных кормов ассоциаций поймы р.Припяти при пастбищном использовании, 2013 г.

	Определяемые показатели, % абс.сух.в.								05			
Номер объекта, ассоциация			Пере-			Макроэлементы				Об- мен-	Кор-	
	Сырая клет- чатка	Сырой проте- ин	вари- вае- мый проте- ин	Сырая зола	Сырой жир	Фос- фор	Ка- лий	Маг- ний	Каль ций	Нат- рий	ная энер- гия, ГДж	мовые еди- ницы
1. Caricetum gracilis	30,6	11,81	8,89	8,8	3,08	0,14	0,55	0,32	0,33	0,52	7,38	0,64
2. Agrostietum tenuis	37,4	8,15	7,96	4,2	2,48	0,12	0,29	0,19	0,16	0,09	4,31	0,51
3. Poo palustris – Alopecuretum pratensis	26,9	12,21	9,40	8,8	3,03	0,22	0,76	0,32	0,35	0,74	7,72	0,72
4. Caricetum vesicariae	34,7	13,42	8,33	6,7	2,15	0,18	0,80	0,18	0,15	0,32	8,73	0,56
5. Agrostietum vinealis	36,9	9,39	8,02	7,0	1,75	0,17	0,36	0,19	0,14	0,17	5,35	0,52
6. Caricetum vulpinae	33,0	12,38	8,56	8,3	2,69	0,25	0,90	0,26	0,37	1,11	7,86	0,59
7. Phalaroidetum arundinacea	32,9	13,69	8,57	6,9	2,56	0,26	0,56	0,34	0,26	1,10	8,96	0,60
8. Poo palustris- Alopecuretum pratensis, вариант Agrostis canina	29,9	16,93	8,99	7,7	2,34	0,24	0,78	0,29	0,34	0,98	11,68	0,65