Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://rep.polessu.by/handle/123456789/18149
Название: Energy-efficient modes for management of biotechnical objects based on natural disturbances prediction
Авторы: Lysenko, V.
Golovinskyi, B.
Reshetiuk, V.
Shcherbatyuk, V.
Shtepa, V.
Ключевые слова: biotechnical object
control system
game theory
statistical decisions
neural network
genetic algorithm
Hilbert Huang transform
Дата публикации: 2015
Библиографическое описание: Energy-efficient modes for management of biotechnical objects based on natural disturbances prediction / V. Lysenko [et al.] // Annals of Warsaw University of Life Sciences – SGGW. Agriculture. – 2015. – № 65. – Р. 111-118.
Аннотация: Energy-efficient modes for management of biotechnical objects based on natural disturbances prediction. Nowadays overwhelming majority of biotechnical objects in agriculture, such as poultry houses, greenhouses etc., function under the mode of stabilization of technological parameters (air temperature, humidity etc.). This approach leads to excess consumption of energy resources (electrical energy, natural gas). Intelligent control based on using different strategies (not only stabilization), prediction and consideration of natural disturbances on biotechnical objects, physiological features of biological objects (poultry, plants etc.) allows to reduce energy consumption. The paper presents specific knowledge concerning promising areas of control systems of biotechnical objects, methodological bases for specialized algorithmic-mathematical software construction based on the methods of game theory and statistical solutions, neural networks (including genetic algorithm), filtering the noise components of information signals.
Располагается в коллекциях:Публикации сотрудников / Publications of the teaching stuff of Polessky State University

Файлы этого ресурса:
Файл Описание РазмерФормат 
Energy-efficient_modes_for_management_of _biotechnical objects based on natural disturbances prediction.pdf535.62 kBAdobe PDFОткрыть


Все ресурсы в архиве защищены авторским правом, все права сохранены.